LinerUnitで解決!

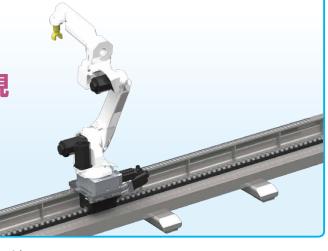
自動化ラインの搬送ユニットで、

こんな事で困っていませんか?/

- 1 重量物を搬送したい
- 2 生産性を上げたい
- 3 装置をコンパクトにしたい

従来機構

ラック&ピニオン


ボールねじ

解決/

カム機構の転がり伝達により高効率

高速ハイパワー& ロングストロークを実現

溶接ロボットやハンドリングロボットの スライダーに使用可能

他機構との比較

	ライナーユニット	ラック&ピニオン	精密ボールねじ
機構			
高速性	©	0	\triangle
	カム機構により整定性が良い 急な加減速、高速走行に対応	慣性の影響を受けやすく 急な加減速には不利	鋼球とねじ軸の間の摩擦により 高速動作には向かない
コンパクト性	0	\triangle	©
	駆動をレール上に配置することで 省スペース化	走行距離分の 駆動部のデッドスペースが発生	駆動部固定のため コンパクトに配置可能
ロングストローク	©	0	Δ
	連結式レールで ロングストローク が可能 長さに制限なし	ロングストローク可能だが 組み付け、調整が手間 長さに制限なし	たわみが発生するため ロングストロークに向かない 長さは3m程度が限度
多軸制御	0	0	Δ
	1レール上に 複数の駆動 を設けることが可能	1レール上に 複数の駆動を設けることが可能	複数の駆動を設けるには 複数のねじが必要
繰り返し精度	©	\triangle	©
	カム機構により、±20µmを実現	ガタがある製品がほとんどで、 高精度位置決めには向かない	ガタが無いため 高精度位置決めが可能
走行音	0	Δ	0
	転がり伝達により走行音が静か	高速動作時には カタカタと音が鳴ることがある	高速動作時には音が出る
メンテナンス性	0	0	Δ
	転がり伝達により 低摩耗 給油は半年に一回 程度	すべり伝達のため摩耗が発生 自動給油システムもしばしば採用される	厳しい条件下では頻繁な給油が必要

※ ◎、○、△は相対評価

Sankyo Seisakusho co.

http://www.sankyo-seisakusho.co.jp

- ■本 社 〒114-8538 東京都北区田端新町3-37-3 PHONE. 03-3800-3330
- ■東京営業所 PHONE. 03-3800-3330 ■宮城出張所 PHONE. 0228-23-5122
- ■名古屋営業所 PHONE. 052-265-0577 ■静岡出張所 PHONE. 0537-36-5715
- ■大阪営業所 PHONE. 06-6618-7000
- Global Office 3-37-3 Tabatashinmachi Kita-ku, Tokyo, Japan 114-8538
 PHONE. +81-(0)3-3800-3330 FAX. +81-(0)3-3800-3380

販売店			